Energy Management Smart Modular Power Analyzer Type WM40 96

- Front dimensions: 96x96 mm
- Front protection degree: IP65, NEMA4x, NEMA12
- Optical front communication port (ANSI type 2)
- Up to one RS232 or RS485 port (on request)
- Communication protocol: MODBUS-RTU, iFIX SCADA compatibility
- MODBUS TCP/IP Ethernet port (on request)
- BACnet-IP over Ethernet port (on request)
- BACnet MS/TP over RS485 (on request)
- Up to 6 digital inputs for tariff selection, "dmd" synch, gas/water (hot-cold) and remote heating metering (on request)
- Up to 8 static outputs (pulse, alarm, remote control) (on request)
- Up to 6 relay outputs (pulse, alarm, remote control) (on request)
- Up to 16 freely configurable alarms with OR/AND logic linkable with up to either 4 relay outputs or up to 6 static outputs (on request)
- Up to 4 analogue outputs (+20mA, +10VDC) (on request)
- Class 0.5 (kWh) according to EN62053-22
- Class C (kWh) according to EN50470-3
- Class 2 (kvarh) according to EN62053-23
- Accuracy $\pm 0.2 \%$ RDG (current/voltage)
- Instantaneous variables readout: 4x4 DGT
- Energies readout: 9+1 DGT
- System variables: VLL, VLN, A, VA, W, var, PF, Hz, phase-sequence, phase-asymmetry and phaseloss.
- Single phase variables: VLL, VLN, AL, An (calculated or real depending on the option), VA, W, var, PF
- Both system and singles phase variables with average, max and min calculation
- Direct neutral current measurement (on request)
- Harmonic analysis (FFT) up to the 32nd harmonic (current and voltage) with harmonics source detection
- Four quadrant energy measurements (imported/exported): total and partial kWh and kvarh (inductive and capacitive) or based on 4 different tariffs (on request)
- Energy measurements according to ANSI C12.20, CA 0.5, ANSI C12.1 (revenue grade)
- Gas, cold water, hot water, remote heating measurements (on request)
- Run hours counter (8+2 DGT)
- Real time clock function
- Data stamping of up to 10,000 events: alarm, min, max, digital input status, digital output status, resets, programming changing (on request)
- Application adaptable display and programming procedure (Easyprog function)
- Universal power supply: 19 to 60VAC (48 to 62 Hz) and 21.6 to 60VDC 90 to 265VAC/VDC

Product Description

Three-phase smart power analyzer with built-in application configuration system and LCD data displaying.
Particularly recommended for the measurement of the main electrical variables.
WM40 is based on a modular housing for panel mounting with IP65 (front) protection degree. Moreover the analyzer can be provided with digital outputs that can be either for pulse proportional to the active and reactive total, partial and tariff energy being measured or/and for alarm outputs. The
instrument is equipped with optical communication port, further I/O's such as: RS485/RS232, Ethernet, BACnet-IP or BACnet MS/TP communication ports, pulse and alarm outputs and 6 digital inputs are available on request. Parameters programming and data reading can be easily performed by means of Wm40Soft.

CARLO GAVAZZI

How to order
WM40-96 AV5 3 HR4 CT S1 XX
Model
Range code
System
Power Supply
A Inputs/Outputs
B Inputs/Outputs
Communication and data stamping
Option

Type Selection

Range codes		System		Power supply	
AV4:	$\begin{aligned} & 400 / 690 \mathrm{~V}_{\mathrm{LL}} \mathrm{AC} \\ & 1(2) \mathrm{A}(* *) \\ & \mathrm{V}_{\mathrm{LN}}: 160 \mathrm{~V} \text { to } 480 \mathrm{~V}_{\mathrm{LN}} \\ & \mathrm{~V}_{\mathrm{LL}}: 277 \mathrm{~V} \text { to } 830 \mathrm{~V}_{\mathrm{LL}} \end{aligned}$	3:	balanced and unbalanced load: 3-phase, 4-wire; 3-phase, 3-wire;	H:	90 to 260 V AC/DC (48 to 62 Hz) (*) 19 to 60VAC (48 to 62 Hz)
AV5:	400/690V L AC 5(6)A (*) VLn: 160 V to $480 \mathrm{~V}_{\text {LN }}$ VLL: 277 V to $830 \mathrm{~V}_{\text {LL }}$		2-phase, 3-wire; 1-phase, 2-wire (*)		21.6 to 60VDC(**)
AV6:	$\begin{aligned} & 100 / 208 \mathrm{~V}_{\mathrm{LL}} \mathrm{AC} \\ & 5(6) \mathrm{A}\left({ }^{* *}\right) \\ & \mathrm{V}_{\mathrm{LN}:} 40 \mathrm{~V} \text { to } 144 \mathrm{~V}_{\mathrm{LN}} \\ & \mathrm{~V}_{\mathrm{LL}}: 70 \mathrm{~V} \text { to } 250 \mathrm{~V}_{\mathrm{LL}} \end{aligned}$				
AV7:	$100 / 208 \mathrm{~V} \text { LL AC }$ 1(2)A (**) Vin: 40 V to 144 V Ln V L: 70 V to $250 \mathrm{~V}_{\mathrm{L}}$				
B Inputs/Outputs		Communication and data S.		Options	
$\begin{aligned} & \text { XX: } \\ & \text { A2: } \end{aligned}$	none (*)	$\begin{aligned} & \text { XX: } \\ & \text { S1: } \\ & \text { S3: } \end{aligned}$	none (*)	XX:	none
	Dual channel		RS485/RS232 port (*)		
	20 mADC output (*)		RS485/RS232 port		
V2:	Dual channel 10VDC output (*)	E2:	with data stamping (*) Ethernet / Internet		
TP:	One temperature and one process signal input (**)		port (**) Ethernet / Internet port with data		
CT:	Direct neutral current measurement + One temperature and one process signal input (**)	B1:	stamping (**) BACnet (IP) over Ethernet (**) BACnet (IP) over Ethernet with data stamping (**)		
		B3:	BACnet (MS/TP) over RS485 (**)		
		B3:	BACnet (MS/TP) over RS485 with data stamping (**)		

A Inputs/Outputs

XX: none (*)
R2: Dual channel relay output (*)
O2: Dual channel static output (*)
A2: Dual channel 20 mADC output (*)
V2: Dual channel 10VDC output (*)
R4: Advanced six channel digital inputs + four channel relay outputs + OR/AND alarm logic management (**)
06: Advanced six channel digital inputs + four channel static outputs + OR/AND alarm logic management (**)
(*) as standard.
(**) on request.

Position of modules and combination

Ref	Description	Main features	Part number	Pos. A	Pos. B	Pos. C
1	WM40 base provided with display, power supply, measuring inputs, optical front communication port.	- Inputs/system: AV5.3 - Power supply: H	WM40 AV5 3 H			
2		- Inputs/system: AV6.3 - Power supply: H	WM40 AV6 3 H			
3		- Inputs/system: AV4.3 - Power supply: H	WM40 AV4 3 H			
4		- Inputs/system: AV7.3 - Power supply: H	WM40 AV7 3 H			
5		- Inputs/system: AV5.3 - Power supply: L	WM40 AV5 3 L			
6		- Inputs/system: AV6.3 - Power supply: L	WM40 AV6 3 L			
7		- Inputs/system: AV4.3 - Power supply: L	WM40 AV4 3 L			
8		- Inputs/system: AV7.3 - Power supply: L	WM40 AV7 3 L			
9	Dual relay output (SPDT)	- 2-channel - Alarm or/and pulse output	M O R2 (1)	X		
10	Dual static output (AC/DC Opto-Mos)	- 2-channel - Alarm or/and pulse output	M O O2 (1)	X		
11	Dual analogue output (+20mADC)	- 2-channel	M O A2 (2)	X	X	
12	Dual analogue output (+10VDC)	- 2-channel	M O V2 (2)	X	X	
13	RS485 / RS232 port module	- Max. 115.2 Kbps	M C 485232 (3)			X
14	Ethernet/TCP IP port module	- RJ45 10/100 BaseT	M C ETH (3)			X
15	BACnet-IP port module	- Based on Ethernet bus	M C BAC IP (3)			X
16	BACnet MS/TP port module	- Over RS485	M C BAC MS (3)			X
17	BACnet MS/TP port module	- Over RS485 - Data Stamping	M C BAC MS M (3)			X
18	Combined digital inputs and Relay outputs (SPDT)	- 6-input channels - 4-output channels - Complex tariff management - OR/AND logic management	M F I6 R4 (4)		X	
19	Combined digital inputs and Static outputs (AC/DC Opto-Mos)	- 6-input channels -6-output channels - Complex tariff management. - OR/AND logic management	M F I6 O6 (4)		X	
20	RS485 / RS232 port module with integrated Memory	- Max. 115.2 Kbps - Data stamping	M C $485232 \mathrm{M} \mathrm{(3)}$			X
21	Ethernet port module with integrated Memory	- RJ45 10/100 BaseT - Data Stamping	M C ETH M (3)			X
22	BACnet over IP port module with integrated Memory	- Based on Ethernet bus - Data Stamping	M C BAC IP M (3)			X
23	Temperature + Process signal measurements (${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$)	- "Pt" type input - 20mA input	M A T P (4)		X	
24	Direct neutral current measurement + Temperature + Process signal measurements $\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right)$	- As above + signal input like a common current input (CT ratio etc.)	MATPN (4)		X	

NOTE: (1) Only one A type module per meter in a maximum combination of 3 total mixed modules on the same meter. (2) Only one $A+B$ type module per meter in a maximum combination of 3 total mixed modules on the same meter. (3) Only one C type module per meter in a maximum combination of 3 total mixed modules on the same meter. (4) Only one " B " type module per meter in a maximum combination of 3 total mixed modules on the same meter.

The $B-C$ position is not mandatory, if to fulfil the application, module " A " is not necessary, then maybe just " B " can be mounted. Another example: if modules " A " and " B " (anyone) are not needed, then just module " C " maybe be mounted. If " A " module is needed, it is mandatory to put it in "A" position. When no modules are mounted, then WM40-96 becomes a simple indicator.

CARLO GAVAZZI

Input specifications

Rated inputs	System type: 1, 2 or 3phase
Current type	Galvanic insulation by means of built-in CT's
Current range (by CT)	AV5 and AV6: 5(6)A AV4 and AV7: 1(2)A
Voltage (by direct connection or VT/PT)	AV4, AV5: 400/690VLL; AV6, AV7: 100/208VLL
Accuracy (Display + RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H.	
$\leq 60 \%$, 48 to 62 Hz)	In: see below, Un: see below
AV4 model	In: 1A, Imax: 2A; Un: 160 to 480 VLN (277 to 830 VLL)
AV5 model	In: 5A, Imax: 6A; Un: 160 to 480 VLN (277 to 830 VLL)
AV6 model	In: 5A, Imax: 6A; Un: 40 to 144VLN (70 to 250VLL)
AV7 model	In: 1A, Imax: 2A; Un: 40 to 144VLN (70 to 250VLL)
Current AV4, AV5, AV6, AV7 models	From 0.01 In to 0.05 In : $\pm(0.5 \% \mathrm{RDG}+2 \mathrm{DGT})$ From 0.05In to Imax: $\pm(0.2 \% \mathrm{RDG}+2 \mathrm{DGT})$
Phase-neutral voltage	In the range Un: $\pm(0,2 \%$ RDG + 1DGT)
Phase-phase voltage	In the range Un: $\pm(0.5 \%$ RDG +1DGT)
Frequency	$\pm 0.1 \mathrm{~Hz}$ (45 to 65 Hz)
Active and Apparent power	0.01 In to 0.05 In , PF 1 : $\pm(1 \% R D G+1 D G T)$ From 0.05In to Imax PF 0.5L, PF1, PF0.8C: $\pm(0.5 \%$ RDG +1 DGT)
Power Factor	$\begin{aligned} & \pm[0.001+0.5 \%(1.000-\text { "PF } \\ & \text { RDG")] } \end{aligned}$
Reactive power	0.1 In to Imax, sen $\phi 0.5 \mathrm{~L} / \mathrm{C}$ $\pm(1 \% \mathrm{RDG}+1 \mathrm{DGT})$ 0.05 In to 0.1 In , sen ϕ $0.5 \mathrm{~L} / \mathrm{C}$: $\pm(1.5 \%$ RDG +1 DGT) 0.05 In to Imax, sen ϕ 1: $\pm(1 \% \mathrm{RDG}+1 \mathrm{DGT})$ 0.02 In to $0.05 \mathrm{In}, \operatorname{sen} \phi 1$: $\pm(1.5 \% \mathrm{RDG}+1 \mathrm{DGT})$
Active energy	Class 0.5 according to EN62053-22, ANSI C12.20 Class C according to EN50470-3.
Reactive energy	Class 2 according to EN62053-23, ANSI C12.1.
Start up current AV5, AV6	5 mA
Start up current AV4, AV7	1 mA

Energy additional errors Influence quantities	According to EN62053-22, ANSI C12.20, Class B or C according to EN50470-3, EN62053-23, ANSI C12.1
Total Harmonic Distortion (THD)	$\pm 1 \%$ FS (FS: 100\%) Phase: $\pm 2^{\circ}$; Imin: 5 mA RMS; Imax: 15Ap; Umin: 30VRMS; Umax: 585Vp Detection of imported and exported harmonics.
Total Demand Distortion (TDD)	$\pm 1 \%$ FS (FS: 100\%) Imin: 5mA RMS; Imax: 15Ap; Umin: 30VRMS; Umax: 585Vp
K-Factor and factor K	$\pm(0.5 \% \mathrm{RDG}+1 \mathrm{DGT})$
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Sampling rate	3200 samples/s @ 50Hz, 3840 samples/s @ 60Hz
Measurements Method Coupling type	See "List of the variables that can be connected to:" TRMS measurements of distorted wave forms. By means of CT's
Crest factor	AV5, AV6: ≤ 3 (15A max. peak) AV4, AV7: ≤ 3 (3A max. peak)
Current Overloads Continuous (AV5 and AV6) Continuous (AV4 and AV7) For 500ms (AV5 and AV6) For 500ms (AV4 and AV7)	$\begin{aligned} & 6 \mathrm{~A}, @ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \\ & 2 \mathrm{~A}, @ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \\ & 120 \mathrm{~A}, @ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \\ & 40 \mathrm{~A}, @ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \end{aligned}$
Voltage Overloads Continuous For 500 ms	$\begin{aligned} & 1.2 \text { Un } \\ & 2 \text { Un } \end{aligned}$
Input impedance 400VL-L (AV4 and AV5) 208VL-L (AV6 and AV7) 5(10)A (AV5 and AV6) 1(2)A (AV4 and AV7)	$\begin{aligned} & >1.6 \mathrm{M} \Omega \\ & >1.6 \mathrm{M} \Omega \\ & <0.2 \mathrm{VA} \\ & <0.2 \mathrm{VA} \end{aligned}$
Frequency	40 to 440 Hz

Output specifications

CARLO GAVAZZI

Output specifications (cont.)

Configuration	By means of the front keypad	Insulation	See "Insulation between inputs and outputs" table
Signal retransmission	The signal output can be connected to any instantaneous variable available in the table "List of the variables that can be connected to".	RS232 port (on request) Type Connections	Bidirectional (static and dynamic variables) 3 wires. Max. distance 15 m
Scaling factor	Programmable within the whole range of retransmission; it allows the retransmission management of all values from 0 to 10VDC.	Protocol Data (bidirectional) Dynamic (reading only) Static (reading and writing only)	System and phase variables: see table "List of variables..." All the configuration
Response time	$\leq 400 \mathrm{~ms}$ typical (filter excluded)	Data format	1 start bit, 8 data bit, no/even/odd parity, 1 stop
Ripple	$\leq 1 \%$ (according to IEC 60688-1, EN 60688-1)	Baud-rate	
Total temperature drift	≤ 350 ppm/ ${ }^{\circ} \mathrm{C}$	Baud-rate	$38.4 \mathrm{k}, 115.2 \mathrm{k} \mathrm{bit} / \mathrm{s}$
Insulation	See "Insulation between inputs and outputs" table	Note	With the rotary switch (on the back of the basic unit) in lock position the
RS485/232 serial port (M C $485 \mathbf{2 3 2}$ on request) RS485			modification of the programming parameters and the reset command by
Type	Multidrop, bidirectional (static and dynamic variables)		means of the serial communication is not allowed anymore. In this
Connections	2-wire Max. distance 1000 m , termination directly on the module	Insulation	case just the data reading is allowed. See "Insulation between inputs and outputs" table
Addresses Protocol	247, selectable by means of the front key-pad MODBUS/JBUS (RTU)	Module with data stamping and event recording memory	
Data (bidirectional)		(M C 485232 M) Event stamping	
Dynamic (reading only) Static (reading and writing only)	System and phase variables: see table "List of variables..." All the configuration parameters.	Type of data	Alarm, min, max, digital input status, digital output status as remote control, resets.
Data format	1 start bit, 8 data bit, no/even/odd parity,1 stop bit	Stamping format Number of events	Date (dd:MM:yy) and hour (hh:mm:ss) reference. Up to 10,000
Baud-rate	Selectable: 9.6k, 19.2k, $38.4 \mathrm{k}, 115.2 \mathrm{k} \mathrm{bit} / \mathrm{s}$	Data management type Data stamping	FIFO
Driver input capability	$1 / 5$ unit load. Maximum 160 transceivers on the same bus.	Type of data Stamping format	Any measured variable can be stored in the memory. Date (dd:MM:yy) and hour (hh:mm:ss) reference.
Note	With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by	Number of variables Time interval Data management type Memory type	Up to 20 different type of variables can be stored. From 1 minute up to 60 minutes. FIFO Data flash
	communication is not allowed anymore. In this case just the data reading is allowed.	Ethernet/Internet port (M C ETH on request) Protocols IP configuration	Modbus TCP/IP Static IP / Netmask / Default gateway

Output specifications (cont.)

Port	Selectable (default 502)
Client connections	Max 5 simultaneously
Connections	RJ45 10/100 BaseTX
	Max. distance 100m
Data (bidirectional)	
Dynamic (reading only)	System and phase variables: see table "List of variables..."
Static (reading and writing only)	All the configuration parameters.
Note	With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed anymore. In this case just the data reading is allowed.
Insulation	See "Insulation between inputs and outputs" table
Module with data stamping and event recording memory (M C ETH M)	
Event stamping	
Type of data	Alarm, min, max, digital input status, digital output status as remote control, resets.
Stamping format	Date (dd:MM:yy) and hour (hh:mm:ss) reference.
Number of events	Up to 10,000
Data management type	FIFO
Data stamping	
Type of data	Any measured variable can be stored in the memory.
Stamping format	Date (dd:MM:yy) and hour (hh:mm:ss) reference.
Number of variables	Up to 20 different type of variables can be stored.
Time interval	From 1 minute up to 60 minutes.
Data management type	FIFO
Memory type	Data flash
BACnet-IP (M C BAC IP on request)	
Protocols	BACnet-IP (for measurement reading purpose) and Modbus TCP/IP (for measurement reading purpose and for programming parameter purpose)
IP configuration	Static IP / Netmask / Default gateway
BACnet-IP Port	Fixed: BACOh
Modbus Port	Selectable (default 502)

Client connections	Modbus only: max 5 simultaneously
Connections	RJ45 10/100 BaseTX
	Max. distance 100m
Data	
Dynamic (reading only)	System and phase variables (BACnet-IP and Modbus): see table "List of variables..."
Static (reading and writing only)	All the configuration parameters (Modbus only).
Note	With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed anymore. In this case just the data reading is allowed.
Insulation	See "Insulation between inputs and outputs" table
Module with data stamping and event recording memory (M C BAC IP M)	
Type of data	Alarm, min, max, digital input status, digital output status as remote control, resets.
Stamping format	Date (dd:MM:yy) and hour (hh:mm:ss) reference.
Number of events	Up to 10,000
Data management type	FIFO
Data stamping	
Type of data	Any measured variable can be stored in the memory.
Stamping format	Date (dd:MM:yy) and hour (hh:mm:ss) reference.
Number of variables	Up to 20 different type of variables can be stored.
Time interval	From 1 minute up to 60 minutes.
Data management type	FIFO
Memory type	Data flash
BACnet MS/TP (on request)	
Available ports	2: RS485 and Ethernet
RS485 port	
Type	Multidrop, monodirectional (dynamic variables)
Connections	2-wire Max. distance 1000m, termination directly on the module
Device object instance	0 to $2^{\wedge} 22-2=4.194 .302$, selectable by means of programming software only
Protocol	BACnet MS/TP (for

Output specifications (cont.)

Supported services	measurement reading purpose) "I have", "l am", "Who has", "Who is", read property	Function	case using either the serial communication port or the front optical port. The outputs can work as
Supported objects	Type 2 (analogue value), Type 8 (device)		advanced alarm outputs and as remote controlled
Data (mono-directional) Dynamic	System and phase variables: see table "List of variables..."	Standard alarm modes	outputs, or in any other combination. Up alarm, down and window alarm. There is
Static	Not available		also the possibility to
Data format	1 start bit, 8 data bit, no parity, 1 stop bit		remote the control of the outputs: the activation of
Baud-rate	Selectable: 9.6k, 19.2k, 38.4 k kbit/s		the outputs is managed through the serial
Driver input capability	$1 / 5$ unit load. Maximum 160 transceivers on the same bus.		communication port (in this case the local alarms are disabled).
	Selectable: 0 to 127	Advanced alarm modes	"OR" or "AND" or
thernet port Protocol	Modbus TCP/IP (for programming parameter purpose)		"OR+AND" functions (see "Alarm parameter and logic" page). Freely
IP configuration	Static IP / Netmask / Default gateway		programmable on up to 16 alarms.
Modbus Port Client connections	Selectable (default 502) Modbus only: max 5 simultaneously	Controlled variables	The alarms can be connected to any variable available in the table "List
Connections	RJ45 10/100 BaseTX Max. distance 100 m		of the variables that can be connected to"
Data Dynamic (reading only)	System and phase	Set-point adjustment	From 0 to 100% of the display scale
	variables: see table "List of	Hysteresis	From 0 to full scale
		On-time delay	0 to 9999s
Static (reading and writing only)	All the configuration parameters (Modbus only).	Output status	Selectable: normally deenergized or normally energized
Note	With the rotary switch (on the back of the basic unit)	Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: "0 s".
	in lock position the	Digital inputs	
	modification of the	Number of inputs	6 (voltage-free contacts)
	programming parameters and the reset command by means of the serial communication is not allowed anymore. In this case just the data reading is allowed.	Purpose	Contact status reading. "dmd" measurements synchronisation and clock synchronisation. Energy tariff selection. Utility meter counters. Trip counter.
Insulation	See "Insulation between		Remote input disable.
Relay Output and Digital Input (M F I6 R4 on request)			Interfacing with watt-hour meters (+kWh, +kvarh,
Relay Outputs			$-k W h,-k v a r h)$. 20 Hz max, duty cycle 50%
Physical outputs	4 (max. one module per instrument)	Prescaler adjustment	From 0.1 to $999.9 \mathrm{~m}^{3}$ or kWh/pulse
Purpose	For either pulse output or alarm output	Open Contact voltage	$\begin{aligned} & \mathrm{kWh} / \mathrm{puls} \epsilon \\ & \leq 3.3 \mathrm{VDC} \end{aligned}$
Type	Relay, SPST type AC 1-5A @ 250VAC; AC 15-1A @ 250VAC	Closed Contact current Contact resistance	$\leq 300 \Omega$ closed contact $\geq 50 \mathrm{k} \Omega$ open contact
Configuration	Only by means of the programming software WM40Soft. In this latter	Input voltage	0 to 0.5VDC LO 2.4 to 25 VDC HI

Output specifications (cont.)

Working mode	- Total and partial energy meters (kWh and kvarh) without digital inputs; - Total and partial energy meters (kWh and kvarh) managed by time periods (t1-t2-t3-t4-t5-t6), W dmd synchronisation (the synchronisation is made every time the tariff changes) and GAS (m^{3}) or WATER (hot/cold $/ \mathrm{m}^{3}$) or remote heating (kWh) meters; - Total and partial energy meters (kWh and kvarh) managed by time periods (t1-t2), W dmd synchronisation (the synchronisation is made independently of the tariff selection) and GAS (m^{3}) or WATER (hot/cold $/ \mathrm{m}^{3}$) or	Signal Function Signal retransmission Pulse type Pulse duration	VON: 2.5VDC/max. 100 mA VOFF: 42VDC The outputs can work as pulse outputs, but also as alarm outputs, remote controlled outputs, or in any other combination. Total: +kWh, -kWh, +kvarh, -kvarh. Partial: +kWh, -kWh, +kvarh, -kvarh Tariff: +kWh, -kWh, +kvarh, -kvarh. The available variables can be linked to any output. Programmable from 0.001 to $10.00 \mathrm{kWh} / \mathrm{kvarh}$ per pulse. Outputs connectable to the energy meters (kWh/kvarh) $\geq 100 \mathrm{~ms}<120 \mathrm{~ms}$ (ON), $\geq 120 \mathrm{~ms}$ (OFF), according to EN62052-31
	remote heating (kWh) meters; - Total energy (kWh, kvarh) and GAS, WATER (hot-cold m^{3}) and remote heating meters (3 choices only). - Remote alarm reset. - Remote input channel	Advanced tariff management No. of tariffs No. of total energies Data format	Up to 6 Up to $4(+k W h,-k W h$, +kvarh, -kvarh) 9-DGT for Total and partial/tariff, gas and water metering.
	- Trip counter of installation protection. - Direct measurements for the power quality analysis (LV or MV/HV connection); - Indirect energy and power measurements by means of watt-hour meters (LV or MV/HV connection); - Direct measurements for the instantaneous variables (LV connection) and	Digital inputs Number of inputs Purpose	6 (voltage-free contacts) Contact status reading. "dmd" measurements synchronisation and clock synchronisation. Energy tariff selection. Utility meter counters. Trip counter. Remote input. Interfacing with watt-hour meters (+kWh, +kvarh, -kWh, -kvarh).
Insulation	indirect measurements for the energy variables (LV or MV/HV). By means of opto-mos See "Insulation between inputs and outputs" table.	Input frequency Prescaler adjustment Open Contact voltage Closed Contact current Contact resistance	20 Hz max, duty cycle 50% From 0.1 to $999.9 \mathrm{~m}^{3}$ or kWh/pulse $\leq 3.3 V D C$ <1mADC $\leq 300 \Omega$ closed contact
Static Output and Digital Input (M F I6 O6 on request) Static Outputs		Input voltage	$\geq 50 \mathrm{k} \Omega$ open contact 0 to 0.5 VDC LO 2.4 to 25 VDC HI
Physical outputs Purpose Type of outputs	6 (max. one module per instrument) For either pulse output or alarm output Opto-Mos	Working mode	- Total and partial energy meters (kWh and kvarh) without digital inputs; - Total and partial energy meters (kWh and kvarh) managed by time periods

CARLO GAVAZZI

Output specifications (cont.)

Temperature input characteristics

Probe	Range	Accuracy	Min Indication	Max Indication
Pt100	$-60.0^{\circ} \mathrm{C}$ to $+300.0^{\circ} \mathrm{C}$	$\pm(0.5 \% \mathrm{RDG}+5 \mathrm{DGT})$	-60.0	+300.0
Pt100	$-76^{\circ} \mathrm{F}$ to $+572^{\circ} \mathrm{F}$	$\pm(0.5 \% \mathrm{RDG}+5 \mathrm{DGT})$	-76.0	+572.0
Pt1000	$-60.0^{\circ} \mathrm{C}$ to $+300.0^{\circ} \mathrm{C}$	$\pm(0.5 \% \mathrm{RDG}+5 \mathrm{DGT})$	-60.0	+300.0
Pt1000	$-76^{\circ} \mathrm{F}$ to $+572^{\circ} \mathrm{F}$	$\pm(0.5 \% \mathrm{RDG}+5 \mathrm{DGT})$	-76.0	+572.0

Tariff energy meters and time period management

NOTE: only in case of M F I6 R4 and M F I6 O6 modules.

Meters		"Holiday Period" energy meters	Up to 10 for this specific function s may split into "H1 ... H10". As per standard period
Partial	72 (up to 10 digit)		
Tariffs	Up to 6		
Time periods	Up to 3 year		management every single
Pulse output	Connectable to total and/or partial meters	"Tariff" energy meters	and year. Up to 6 per period (P1/P2
Storage	Consumption history by storing the monthly energy meters (12 previous months) into the EEPROM. Storage of total and partial energy meters. Energy meter storage format (EEPROM) Min. 9,999,999,999.9 kWh/kvarh Max. 9,999,999,999.9 kWh/kvarh		and H1 ... H10). Every tariff is daily based and is called "t1" ... "t6". The single tariff can be set as "Hours and minutes". Every single tariff "t" may has an independent start and stop which may be different also from period to period "P1 and P2". Every single tariff manages an independent energy
Energy Meters "Total" energy meters	Base on digital inputs and clock management +kWh, +kvarh, -kWh, kvarh.		meter which is split according the measured energy in: +Wh, -Wh, +varh, -varh.
"Standard Period" energy meters	Up to 2 may split into "P1" and "P2" which can be set by month and year each.	Partial energy meters	+kWh, +kvarh, -kWh, kvarh (basic unit without any module)

Tariff energy meters overall working scheme

NOTE: only in case of M F I6 R4 and M F I6 O6 modules.

Where t1 to t6 are the "Tariffs".

Where P1 and P2 are the "Standard Periods" and H1 ... H10 Holiday periods which are identified by a defined day (non working day), by a vacation period or by a season period.

Note: the displaying of every single energy tariff is relevant only to the period being used. Other periods are available through the communication port.

Energy meters

Meters Total Partial	$4(10$ digit)
Pulse output	$4(10$ digit)

Energy Meters
Total energy meters
Partial energy meters
+kWh, +kvarh, -kWh,
-kvarh
+kWh, +kvarh, -kWh,
-kvarh

Management of the digital inputs

NOTE: only in case of M F 16 R4 and M F I6 O6 modules.

Function	Note	Digital inputs					
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Synch (dmd)	(1)	YES					
Tariff change	(2)	YES	YES	YES			
Hot Water	(3)				YES	YES	YES
Cold Water	(3)				YES	YES	YES
Gas	(3)				YES	YES	YES
Remote heating	(3)				YES	YES	YES
Remote alarm reset	(4)				YES		
Trip counter of protection	(5)				YES		
Remote input channel status	(6)	YES	YES	YES	YES	YES	YES
kWh counting (-)	(7)			YES			
kWh counting (+)	(7)				YES		
kvarh counting (+)	(7)					YES	

Note: every single digital input can be configured according to the table above.
(1) At each status change (from OFF to ON) it synchronises the DMD calculation made by the meter with a digital signal coming from the Utility or other source. It also synchronises the clock to the multiple of the integration time (which is selectable as either database of data-logging function or Load profile) nearer to the current time.
(2) It is used to select by means of the logic of three inputs up to 6 different tariffs: t1-t2-t3-t4-t5-t6. Every time the tariff changes, it starts also the synchronisation of the "dmd" calculation.
(3) It is used to count the pulses coming from different Utility meters like: cold water, hot water, gas and remote heating.
(4) It is used to remotely reset the alarms.
(5) It is used to count how many times an external protection device trips.
(6) This function is available only in case of serial communication. It allows to detect the status of the digital input. The status is displayed on the display as well.
(7) The energy is metered by means of pulses coming from a watt-hour meter. This meter can be provided with up to 3 outputs (for imported active and reactive energy and for exported active energy). Note: the pulses counted from the watthour meter replaces the standard measurement of energy and the relevant displaying (total, partial and tariff), all other measurements (eg: V-A-W-VA-var, THD and so on) are still performed and displayed.

Harmonic distortion analysis

Analysis principle	FFT
Harmonic measurement Current	
Voltage	Up to the 32nd harmonic
Type of harmonics	Up to the 32nd harmonic
	THD (VL1 and VL1-N)
	THD odd (VL1 and VL1-N)
	THD even (VL1 and VL1-N)
	TDD
	The same for the other
	phases:
	L2, L3.
	THD (AL1)
	THD odd (AL1)
	THD even (AL1)
	The same for the other
	phases:
	L2, L3.

$\left.\begin{array}{ll}\text { Harmonic phase angle } & \begin{array}{l}\text { The instrument measures } \\ \text { the angle between the } \\ \text { single harmonic of " } V \text { " and } \\ \text { the single harmonic of " } \mathrm{l} \text { " } \\ \text { of the same order. }\end{array} \\ \text { According to the value of } \\ \text { the electrical angle, it is } \\ \text { possible to know if the } \\ \text { distortion is absorbed or } \\ \text { generated. Note: if the } \\ \text { system has } 3 \text { wires the } \\ \text { angle cannot be measured. }\end{array}\right\}$

Event logging, data logging and load profiling

NOTE: only in case of M C 485232 M, M C ETH M and M C BAC IP M modules

Event logging	Only with communication module provided with data memory.		calculated (min. sample) with an interval within two following measurements of
Data displaying	The data are available on the display limited to the last 99 events. All events can be both checked and	Storage duration	approx. 100 ms . Before overwriting, see "Historical data storing time table.
	downloaded using any available communication	Number of variables	See "Historical data storing time table".
	port in combination with WM40Soft software.	Data format	Variable, date (dd:mm:yy) and time (hh:mm:ss)
Function enabling	Activation: NO/YES	Storage method	FIFO
Stored data type	Alarms, max./min.	Memory type	Flash
Number of events	Max. 10,000	Memory size	4 Mb
Data reset	All events can be reset	Memory retention time	10 years
Data format	manually Event, date (dd:mm:yy) and time (hh:mm:ss)	Load profiling	Only with communication module provided with data memory.
Storage method Memory type Memory retention time	FIFO Flash 10 years	Data displaying	The data are not available on the display but they can be both checked and
Data logging	Only with communication module provided with data memory.		downloaded using any available communication port in combination with
Data displaying	The data are not available on the display but they can be both checked and downloaded using any available communication port in combination with WM40Soft software.	Function enabling Storage interval Storage duration	WM40Soft software. Activation: NO/YES Selectable: 5-10-15-20-30- 60 minutes of Wdmd and VAdmd. Before overwriting, 100 weeks: with recording
Function enabling	Activation: NO/YES		interval of $5 \mathrm{~min} ; 300$
Stored data type	All variables.		weeks: with storing interval
Storage interval	Programmable from 1 min . to 60 min.; all instantaneous variables can be selected	Data format Data synchronisation	of 15 min . Wdmd variable value, minutes, day, month. Based on internal clock
Sampling management	The sample stored within the selected time interval results from the continuous average of the measured values. The average is	Other characteristics	As per Event and Data logging.

CARLO GAVAZZI

Display, LED's and commands

$\left.\begin{array}{ll}\text { Virtual alarms } & \begin{array}{l}\text { 4 red LED available in case } \\ \text { of virtual alarm (ALG1-AL }\end{array} \\ \text { G2-AL G3-AL G4), every } \\ & \text { LED groups } 4 \text { alarms. } \\ & \text { Note: the real alarm is just } \\ \text { the activation of the proper }\end{array}\right\}$

Main functions

Password	Numeric code of max. 4	System 3-Ph. 1 balanced load	and 3-phase to phase
	digits; 2 protection levels		voltage measurements.
	of the programming data:		3 -phase (3-wire), one
1st level	Password "0", no		current and 3-phase to
	protection;		phase voltage
2nd level	Password from 1 to 9999,		measurements
	all data are protected		3 -phase (4-wire), one current and 3-phase to
System selection			
System 3-Ph.n unbalanced load	3-phase (4-wire)		neutral voltage
System 3-Ph. unbalanced load	3 -phase (3-wire), three		measurements.
	currents and 3-phase to	System 3-Ph. 2 balanced load	3 -phase (2-wire), one
	phase voltage		current and 1-phase (L1) to
	measurements, or in case		neutral voltage
	of Aaron connection two		measurement.
	currents (with special	System 2-Ph	2-phase (3-wire)
	wiring on screw terminals)	System 1-Ph	1-phase (2-wire)

CARLO GAVAZZI

Main functions (cont.)

CARLO GAVAZZI

General specifications

Operating temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to
$\left.131^{\circ} \mathrm{F}\right)(\mathrm{R} . \mathrm{H}$. from 0 to 90%	
non-condensing @ $\left.40^{\circ} \mathrm{C}\right)$	
according to EN62053-21,	
	EN50470-1 and EN62053-
	23

Standard compliance	
Safety	IEC60664, IEC61010-1
	EN60664, EN61010-1
	EN62052-11.
Metrology	EN62053-21, EN62053-23,
	EN50470-3.
	MID "annex MI-003"
Pulse output	DIN43864, IEC62053-31
Approvals	CE, cULus "Listed" (CuLus: max. $40^{\circ} \mathrm{C}$, all modules in all combinations)
Connections Cable cross-section area	Screw-type
	max. $2.5 \mathrm{~mm}^{2}$.
	min./max. screws
	tightening torque: $0.4 \mathrm{Nm} /$
	0.8 Nm .
	Suggested screws tightening torque: 0.5 Nm
Housing DIN	
Dimensions (WxHxD)	Module holder:
	$96 \times 96 \times 50 \mathrm{~mm}$.
	" A " and " B " type modules:
	$89.5 \times 63 \times 16 \mathrm{~mm}$.
	"C" type module:
	$89.5 \times 63 \times 20 \mathrm{~mm}$.
Max. depth behind the panel	With 3 modules ($\mathrm{A}+\mathrm{B}+\mathrm{C}$):
	81.7 mm
Material	ABS, self-extinguishing: UL
	94 V -0
Mounting	Panel mounting
Protection degree	
Front	IP65, NEMA4x, NEM12
Screw terminals	IP20
Weight	Approx. 400 g (packing
	included)

Power supply specifications

Auxiliary power supply	H: 90 to $265 \mathrm{VAC} / \mathrm{DC} ;$ $\mathrm{L}: 19$ to $60 \mathrm{VAC} / \mathrm{DC}(48$ to $62 \mathrm{~Hz})$
Auxiliary power supply	
according to UL	100 to $240 \mathrm{VAC}+10 \%-15 \%$ $\mathbf{2 4 \text { to } 2 4 0 \mathrm { VDCC } + 1 0 \% - 2 0 \%} \mathbf{2 4 \text { to } 4 8 \mathrm { VDC } + 1 0 \% - 1 5 \%}+$

AC: 20 VA
DC: 10 W

Insulation between inputs and outputs

	Measuring Inputs	Relay outputs	Static Outputs	Communication port	Analogue Outputs	Digital input	Auxiliary power supply
Measuring Inputs	-	4 kV					
Relay outputs	4kV	2 kV	NA	4kV	4 kV	4kV	4 kV
Static Outputs	4 kV	NA	2kV	4 kV	4 kV	4 kV	4 kV
Communication port	4 kV	4 kV	4kV	-	4 kV	4 kV	4kV
Analogue Outputs	4kV	4 kV	4 kV	4 kV	OkV	4 kV	4 kV
Digital input	4 kV	-	4 kV				
Aux. power supply	4 kV	4kV	4 kV	4kV	4kV	4 kV	-

NOTE: in the table "NA" means combination of modules not allowed. All the models have, mandatory, to be connected to external current transformers because the isolation among the current inputs is just functional (100VAC).

List of the variables that can be connected to:

- Communication port (all listed variables)
- Analogue outputs (all variables with the only exclusion of "totalizers" and "run hour counter"
- Pulse outputs (only "energies")
- Alarm outputs ("totalizers", "hour counter" and "max" excluded)

No	Variable	$\begin{aligned} & \text { 1-ph. } \\ & \text { sys } \end{aligned}$	$\begin{aligned} & \text { 2-ph. } \\ & \text { sys } \end{aligned}$	3-ph. 3/4-wire balanced sys	3-ph. 2-wire balanced sys	3-ph. 3-wire unbal. sys	3-ph. 4-wire unbal. sys	Notes
1	VL-N sys	0	X	X	X	\#	X	sys= system= $\sum(1)(2)(3)$
2	VL1	X	X	X	X	\#	X	(1)(2)(3)
3	VL2	0	X	H	H	\#	X	(1)(2)(3), (H)=VL1
4	VL3	0	0	H	H	\#	X	(1)(2)(3), (H)=VL1
5	VL-L sys	\#	X	X	X	X	X	sys= system $=\sum$ (1)
6	VL1-2	\#	X	X	P	X	X	(1)(2)(3), (P) = VL1*1.73
7	VL2-3	\#	0	X	P	X	X	(1)(2)(3), (P)=VL1*1.73
8	VL3-1	\#	0	X	P	X	X	(1)(2)(3), (P)=VL1*1.73
9	AL1	X	X	X	X	X	X	(1)(2)(3)
10	AL2	0	X	R	R	X	X	(1)(2)(3), (R)=AL1
11	AL3	0	0	R	R	X	X	(1)(2)(3), (R)=AL1
12	VA sys	0	X	X	X	\#	X	sys= system $=\sum(1)(2)(3)$
13	VA L1	X	X	X	X	\#	X	(1)(2)(3)
14	VA L2	0	X	X	X	\#	X	(1)(2)(3)
15	VA L3	0	0	X	X	\#	X	(1)(2)(3)
16	var sys	0	X	X	X	\#	X	sys= system $=\sum(1)(2)(3)$
17	var L1	X	X	X	X	\#	X	(1)(2)(3)
18	var L2	0	X	X	X	\#	X	(1)(2)(3)
19	var L3	0	0	X	X	\#	X	(1)(2)(3)
20	W sys	0	X	X	X	X	X	sys= system $=\sum(1)(2)(3)$
21	WL1	X	X	X	X	\#	X	(1)(2)(3)
22	WL2	0	X	S	S	\#	X	(1)(2)(3), (S)=WL1
23	WL3	0	0	S	S	\#	X	(1)(2)(3), (S) =WL1
24	PF sys	0	X	X	X	\#	X	sys= system $=\sum(1)$
25	PF L1	X	X	X	X	\#	X	(1)(2)(3)
26	PF L2	0	X	T	T	\#	X	(1)(2)(3), (T)=PFL1
27	PF L3	0	0	T	T	\#	X	(1)(2)(3), (T)=PFL1
28	Hz	X	X	X	X	X	X	(1)(2)(3)
29	Phase seq.	0	0	X	0	X	X	

(X) = available; $(\mathrm{O})=$ not available (variable not available on the display); (\#) Not available (the relevant page is not displayed)
(1) Min. and Max. and average value with data storage; (2) "dmd" calculation and data storage; (3) "dmd-max" calculation and data storage; (5) On 4 quadrants (ind/cap); (6) C1, C2 and C3 may be set as either cold water, hot water, remote heating or gas depending on the input configuration.

List of the variables that can be connected to (cont.):

- Communication port (all listed variables)
- Analogue outputs (all variables with the only exclusion of "energies" and "run hour counter"
- Pulse outputs (only "energies")
- Alarm outputs ("energies" , "hour counter" and "max" excluded)

No	Variable	$\begin{aligned} & \text { 1-ph. } \\ & \text { sys } \end{aligned}$	$\begin{aligned} & \text { 2-ph. } \\ & \text { sys } \end{aligned}$	3-ph. 3/4-wire balanced sys	3-ph. 2-wire balanced sys	3-ph. 3-wire unbal. sys	3-ph. 4-wire unbal. sys	Notes
30	Asy VLL	0	X	X	O	X	X	Asymmetry
31	Asy VLN	0	O	0	0	0	X	Asymmetry
32	Run Hours	X	X	X	X	X	X	
33	kWh (+)	X	X	X	X	X	X	Total
34	kvarh (+)	X	X	X	X	\#	X	Total (5)
35	kWh (+)	X	X	X	X	X	X	Partial or by tariff
36	kvarh (+)	X	X	X	X	\#	X	Partial or by tariff (5)
37	kWh (-)	X	X	X	X	X	X	Total
38	kvarh (-)	X	X	X	X	\#	X	Total (5)
39	kWh (-)	X	X	X	X	X	X	Partial
40	kvarh (-)	X	X	X	X	\#	X	Partial (5)
41	C1 (input 4)	X	X	X	X	X	X	Total (6)
42	C2 (input 5)	X	X	X	X	X	X	Total (6)
43	C3 (input 6)	X	X	X	X	X	X	Total (6)
44	Trip counter							Total
45	kWh Water	X	X	X	X	X	X	Total
46	A L1 THD	X	X	X	X	X	X	(2) (3) (4)
47	A L2 THD	0	X	F	F	X	X	(2)(3)(4), (F)=AL1THD
48	A L3 THD	0	0	F	F	X	X	(2)(3)(4), (F)=AL1THD
49	V L1 THD	X	X	X	X	\#	X	(2)(3)(4)
50	V L2 THD	0	X	X	G	\#	X	(2)(3)(4), (G)=VL1THD
51	V L3 THD	0	O	X	G	\#	X	(2)(3)(4), (G)=VL1THD
52	V L1-2 THD	\#	X	X	\#	X	X	(2) (3) (4)
53	V L2-3 THD	\#	0	X	\#	X	X	(2) (3) (4)
54	V L3-1 THD	\#	0	X	\#	X	X	(2) (3) (4)
55	A L1 TDD	X	X	X	X	X	X	(2) (3) (4)
56	A L2 TDD	0	X	X	X	X	X	(2) (3) (4)
57	A L3 TDD	0	0	X	X	X	X	(2) (3) (4)
58	K-Factor	0	0	X	X	X	X	(2) (3) (4)

$(X)=$ available; $\quad(\mathrm{O})=$ not available (variable not available on the display); (\#) Not available (the relevant page is not displayed); (2) "dmd" calculation and data storage; (3) "dmd-max"calculation and data storage; (4) Odd and Even THD’s;

List of selectable applications

	Description	Notes
A	Cost allocation	Imported energy metering
B	Cost control	Imported and partial energy metering and utilities
C	Complex cost allocation	Imported/exported energy (total, partial and tariff) and utilities
D	Solar	Imported and exported energy metering with some basic power analyzer function
E	Complex cost and power analysis	Imported/exported energy (total and partial) and power analysis
F	Cost and power quality analysis	Imported energy and power quality analysis
G	Advanced energy and power analysis for power generation	Complete energy metering and power quality analysis

Display pages

No	$\begin{gathered} \text { Line } 1 \\ \text { Variable Type } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Line } 2 \\ \text { Variable Type } \end{array}$	Line 3Variable Type	Line 4Variable Type	Line 5 Variable Type	Note	Applications					
								B	D	E F	F	
0	Total kWh (+)						\times	\times	\times	x x	x \times	
1	Total kvarh (+)						x	$\times \times$			x \times	
2	Total kWh (-)								$\times \times$	x		
3	Total kvarh (-)									x		
4	kWh (+) partial									$\mathrm{x} \times$	$\times \times$	x
5	kvarh (+) part.							$\times \mathrm{x}$		x x	${ }^{\times} \times$	
6	kWh (-) partial									x		
7	kvarh (-) part.								\times	x		
8	Run Hours (99999999.99)								$\times \times$	$\mathrm{x} \times$	$\times \times$	
9	kWh (+) t1									x		
10	kvarh (t) t1									x		
11	kWh (-) t1									x		
12	kvarh (-) t1								x	x		
13	kWh (+) t2								\times	x		
14	kvarh (+) t2								\times	x		
15	kWh (-) t2									x		
16	kvarh (-) t2									x		
17	kWh (+) t3								x	x		
18	kvarh (+) t3									x		
19	kWh (-) t3									x		
20	kvarh (-) t3									x		
21	kWh (+) t4							\times	\times	x		
22	kvarh (+) t4								\times	x		x
23	kWh (-) t4									x		
24	kvarh (-) t4									x		
25	kWh (+) t5									x		
26	kvarh (+) t5								x	x		
27	kWh (-) t5								x	x		
28	kvarh (-) t5									x		
29	kWh (+) t6									x		
30	kvarh (t) t6								\times	x		
31	kWh (-) t6									x		x
32	kvarh (-) t6									x		x
33	C1					(5)		\times		x		
34	C2					(5)		\times	x	x		
35	C3					(5)		$\times \mathrm{x}$		x		x
36		VLN Σ	VL1	VL2	VL3	(1) (2) (3)			x	x x	¢ $\times \mathrm{x}$	
37		VLL Σ	VL1-2	VL2-3	VL3-1	(1) (2) (3)			\times	$\mathrm{x} \times \mathrm{x}$	¢ \times x	
38		An	AL1	AL2	AL3	(1) (2) (3)			x	x x	x \times	
39		Hz	"ASY"	VLL sys (\% asy)	VLN sys (\% asy)	(1) (2) (3)			x	$\mathrm{x} \times \mathrm{x}$	x \times	
40		W Σ	WL1	WL2	WL3	(1) (2) (3)			\times	x x	¢ \times	
41		var Σ	var L1	var L2	var L3	(1) (2) (3)				$\mathrm{x} \times \mathrm{x}$	¢ \times x	
42		PF Σ	PFL1	PF L2	PF L3	(1) (2) (3)				x x	$\times \times$	
43		VA Σ	VAL1	VA L2	VA L3	(1) (2) (3)				$\mathrm{x} \times \mathrm{x}$	x \times	
44				Process sig.	Temperature	(1) (2) (3)					$\times \mathrm{x}$	
45			THD V1	THD V2	THD V3	(1) (2) (3)					x	
46			THD V12	THD V23	THD V31	(1) (2) (3)					${ }^{\times}$	
47			THD A1	THD A2	THD A3	(1) (2) (3)					${ }^{\times x}$	
48			THD V1 odd	THD V2 odd	THD V3 odd	(1) (2) (3)					x	
49			THD V12 odd	THD V23 odd	THD V31 odd	(1) (2) (3)					$\times{ }^{\times}$	
50			THD A1 odd	THD A2 odd	THD A3 odd	(1) (2) (3)					x	
51			THDV1 even	THDV2 even	THD V3 even	(1) (2) (3)					\times	
52			THD V12 even	THD V23 even	THD V31 even	(1) (2) (3)					x	
53			THD A1 even	THD A2 even	THD A3 even	(1) (2) (3)					x	
54			TDD A1	TDD A2	TDD A3	(1) (2) (3)					x	
55			k-FACT L1	k-FACT L2	k-FACT L3	(1) (2) (3)						

(1) Also Minimum value (no EEPROM storage). (2) Also Maximum value (no EEPROM storage). (3) Also Average (dmd) value (no EEPROM storage). (5) C1, C2 and C3 may be set as either cold water, hot water, remote heating or gas depending on the digital inputs configuration.

Additional available information on the display

No	8 Line 1	Line 2	Line 3	Line 4	Line 5	Applications						
No						A	B	C	D	E	F	G
1	Lot n . (text) xxxx	Yr. (text) xx	rEL	X.xx	1...60 (min) "dmd"	X	X	X	X	X	X	X
2	Conn. xxx.x (3ph.n/3ph/3ph.1/ $3 p h .2 / 1 \mathrm{ph} / 2 \mathrm{ph})$	CT.rA (text)	1.0 ... 99.99k	PT.rA (text)	1.0... 9999	x	x	x	x	X	X	x
3	LED PULSE (text) kWh	xxxx kWh per pulse				x	X	X	x	X	x	X
4	PULSE out1 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	$\begin{aligned} & +/- \text { tot/PAr/ } \\ & \text { tAr 1-2-3-4 } \end{aligned}$			X	x	X	x	X	x	X
5	PULSE out2 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	$\begin{aligned} & +/- \text { tot/PAr/ } \\ & \text { tAr 1-2-3-4 } \end{aligned}$			X	x	X	x	X	x	x
6	PULSE out3 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr/ tAr 1-2-3-4			x	x	X	x	X	x	x
7	PULSE out4 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	$\begin{aligned} & \text { +/- tot/PAr/ } \\ & \text { tAr 1-2-3-4 } \end{aligned}$			X	x	X	x	X	x	x
8	PULSE out5 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	$\begin{aligned} & +/- \text { tot/PAr/ } \\ & \text { tAr 1-2-3-4 } \end{aligned}$			x	x	X	x	X	x	x
9	PULSE out6 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr/ tAr 1-2-3-4			x	x	X	x	X	x	x
10	PULSE out7 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	$+/- \text { tot/PAr/ }$ tAr 1-2-3-4			X	x	x	x	X	x	x
11	PULSE out8 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	$\begin{aligned} & \text { +/- tot/PAr/ } \\ & \text { tAr 1-2-3-4 } \end{aligned}$			X	x	x	x	X	x	x
12	Remote out.	Out 1 (text)	on/oFF	Out 2 (text)	on/oFF	x	x	x	x	X	x	x
13	Remote out.	Out 3 (text)	on/oFF	Out 4 (text)	on/oFF	x	x	x	x	X	X	X
14	Remote out.	Out 5 (text)	on/oFF	Out 6 (text)	on/oFF	x	x	x	x	X	x	X
15	Remote out.	Out 7 (text)	on/oFF	Out 8 (text)	on/oFF	x	x	x	x	X	x	x
16	AL1 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	x	x
17	AL2 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	X	X
18	AL3 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	x
19	AL4 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	x	x
20	AL5 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	X	x
21	AL6 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	x	X
22	AL7 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	X	x
23	AL8 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	X	X
24	AL9 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	x
25	AL10 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	x	X
26	AL11 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	X	x
27	AL12 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	X	x
28	AL13 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	x	x
29	AL14 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	X	x
30	AL15 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	X	x
31	AL16 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	X	x
32	Analogue 1	Hi:E	$0.0 \ldots 9999$	Hi.A	0.0 ... 100.0\%				x	X	X	X
33	Analogue 2	Hi:E	$0.0 \ldots 9999$	Hi.A	0.0 ... 100.0\%				x	X	X	x
34	Analogue 3	Hi:E	$0.0 \ldots 9999$	Hi.A	0.0 ... 100.0\%				x	X	X	X
35	Analogue 4	$\mathrm{Hi}: \mathrm{E}$	0.0 ... 9999	Hi.A	0.0 ... 100.0\%				X	X	X	X
36	Optical	bdr (text)	$\begin{gathered} \text { 9.6/19.2/ } \\ 38.4 / 115.2 \end{gathered}$			x	x	X	x	X	X	X
37	COM port	Add (text)	xxx (address)	bdr (text)	$\begin{gathered} \hline 9.6 / 19.2 / \\ 38.4 / 115.2 \end{gathered}$	x	X	X	x	X	X	X
38	IP address	XXX	XXX	XXX	XXX	X	x	x	x	X	X	X
39	xx.xx.xx xx:xx	Date	Time			x	x	x	x	X	X	x
40	Event page Date Time								x	X	X	X

CARLO GAVAZZI

Back protection rotary switch

	Function	Rotary switch position	Description
	Unlock	1	All programming parameters are freely modifiable by means of the front key-pad and by means of the communication port.
$\left\|\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right\|$	Lock	7	The key-pad, as far as programming is concerned and the data through the serial communication cannot be changed (no writing into meter allowed). Data reading is allowed.

Accuracy (According to EN50470-3 and EN62053-23)

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

- Accuracy limits (Active energy) Start-up current: 5mA (AV5-6), 1mA (AV4-7)
——Accuracy limits (Reactive energy)
Start-up current: 5mA (AV5-6), 1mA (AV4-7)

Used calculation formulas

Phase variables
Instantaneous effective voltage
$V_{1 N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i} \cdot\left(A_{1}\right)_{i}$
Instantaneous power factor
$\cos \varphi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{i}^{2}}$
Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$\operatorname{var}_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

System variables

Equivalent three-phase voltage
$V_{\Sigma}=\frac{V_{1}+V_{2}+V_{3}}{3} \cdot \sqrt{3}$
Voltage asymmetry
$A S Y_{L L}=\frac{\left(V_{L L \text { max }}-V_{L L \text { min }}\right)}{V_{L L} \Sigma}$
$A S Y_{L N}=\frac{\left(V_{L N \text { max }}-V_{L N \text { min }}\right)}{V_{L N} \Sigma}$
Three-phase reactive power
$\operatorname{var}_{\Sigma}=\left(\right.$ var $_{1}+$ var $_{2}+$ var $\left._{3}\right)$
Three-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
Three-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}^{2}+\operatorname{var}_{\Sigma}^{2}}$
Total harmonic distortion
$T H D_{N}=100 \frac{\sqrt{\sum_{n=2}^{N}\left|X_{n}\right|^{2}}}{\left|X_{1}\right|}$

Three-phase power factor
$\cos \varphi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$

Energy metering

$k \operatorname{var} h i=\int_{t 1}^{12} Q i(t) d t \cong \Delta t \sum_{n 1}^{n 2} Q n j$
$k W h i=\int_{t 1}^{\prime 2} P i(t) d t \cong \Delta t \sum_{n 1}^{n 2} P n j$
Where:
$\mathbf{i}=$ considered phase (L1, L2 or L3)
$\mathbf{P}=$ active power; $\mathbf{Q}=$ reactive power; $\mathbf{t}_{1}, \mathbf{t}_{2}=$ starting and ending time points of consumption recording; $\mathbf{n}=$ time unit; $\Delta \mathbf{t}=$ time interval between two successive power consumption; $\mathbf{n}_{1}, \mathbf{n}_{2}=$ starting and ending discrete time points of consumption recording

Wm40Soft parameter progr. and var. reading software

Wm40Soft

Working mode

Multi-language software (Italian, English, French, German, Spanish) for variable reading, instrument calibration and parameters programming. The program runs under Windows 98/98SE/2000/NT/XP/Nista Three different working modes can be selected: - management of local RS232 (MODBUS);

Data Storing
Data Transfer

- management of local optical port (MODBUS); - management of a local RS485 network (MODBUS); In pre-formatted XLS files (Excel data base).
Manual or automatic at programmable intervals.

Alarm parameters and logic (programmable only by means of

0	Each symbol includes all the settings described in the "alarm" paragraph and listed on the right:	- Enable. - Variable - Type - Latch - Disable	- Set 1 - Set 2 - OUT - Delay on. Delay off. - Function (and/or)	,	A, B, C... up to 16 locks to control parameters.

UP alarm

DOWN alarm

In-window alarm
Alarm is on when the value
is between
SET 1 and SET 2

Ext. window alarm with disabling at power on Alarm is on when value exceeds SET 1 or goes below SET 2

Example of AND/OR logic alarm:

Historical data storing time table

Time interval (minutes)	4 selected variables			8 selected variables			12 selected variables			20 selected variables Data storing time		
	Data storing time			Data storing time								
	Days	Week	Year									
1	32	5	-	19	3	-	15	2	-	8	1	-
5	161	23	-	97	14	-	73	10	-	40	6	-
10	323	46	-	194	28	-	145	21	-	81	12	-
15	484	69	1.3	291	42	-	218	31	-	121	17	-
20	646	92	1.8	388	55	1.1	291	42	-	161	23	-
30	969	138	2.7	581	83	1.6	436	62	1.2	242	35	-
45	1453	208	4	872	125	2.4	654	93	1.8	363	52	1
60	1938	277	5.3	1163	166	3.2	872	125	2.4	484	69	1.3

The working of data logging

Wiring diagrams

System type selection: 3-Ph. 2

System type selection: 3-Ph
3-ph, 3-wire, unbalanced load Fig. 5

3-CT connection

System type selection: 3-Ph (cont.)

3-ph, 3-wire, unbalanced load Fig. 7

Wiring diagrams

System type selection: 3-Ph. 1

System type selection: 2-Ph

System type selection: 1-Ph (cont.)
1-ph, 2-wire

Power Supply
90 to 260VAC/DC (H option) Fig. 16

System type selection: 1-Ph

Static, relay, analogue out. and digital in. wiring diagrams

6 Opto-mosfet outputs

Temperature, process signal and true In wiring diagrams

RS485 and RS232 wiring diagrams

NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between ($\mathrm{B}+$) and (T). \boldsymbol{A} : the communication RS232 and RS485 ports can't be connected and used simultaneously.

RS485 wiring diagram of Bacnet module

NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between ($B+$) and (T).

Front panel description

1. Key-pad

To program the configuration parameters and scroll the variables on the display.
2. Display

LCD-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

3. kWh LED

Red LED blinking proportional to the energy being measured.
4. Alarm LED's

Red LED's light-on when virtual alarms are activated.
5. Multiple bar-graph

To show at a glance the status of the single phases L1-L2-L3.
6. Main bar-graph

To display the power consumption versus the installed power.
7. Optical communication port

To program the working parameters, to read the measurements and to download the stored data.

Dimensions and Panel cut-out

