

Product Description

16-bit $\mu \mathrm{P}$-based smart power transducer with a built-in configuration key-pad. The
house is for DIN-rail mounting and ensures a degree of protection (front) of IP 50.

16-bits μ P-based smart power transducer

- Measurements of: W, Wavg, VA, VAr, PF, Wh, VAh, VArh, Amax (among the phases), VL-L avg, VL1-N, VL2-N, VL3-N, Hz L1.
- TRMS measurement of distorted waves (voltage/current)
- All configuration functions selectable by built-in key-pad
- Password protection of programming parameters
- Degree of protection (front): IP 50
- Optional independent alarm setpoint
- Optional analogue output ($20 \mathrm{~mA} \mathrm{DC/} \pm 10 \mathrm{~mA} \mathrm{DC/}$ $\pm 5 \mathrm{~mA} \mathrm{DC/10} \mathrm{VDC/} \pm 1 \mathrm{VDC}$)
- Optional serial RS 422/485 output
- MODBUS, JBUS protocol.

CARLO GAVAZZI

Type Selection

CARLO GAVAZZI

Input Specifications (cont.)

Output Specifications

Analogue outputs
Number of outputs
Range

Scaling factor

Response time
Temperature drift
Load: 20 mA output $\pm 10 \mathrm{~mA}$ output $\pm 5 \mathrm{~mA}$ output 10 V output $\pm 1 \mathrm{~V}$ output
Insulation
1 (standard) +1 (on request)
0 to 20 mADC,
0 to $\pm 10 \mathrm{mADC}$,
0 to $\pm 5 \mathrm{mADC}$,
0 to 10 VDCC,
0 to $\pm 1 \mathrm{VDC}$
Programmable within the
whole range of retransmis-
sion; it allows the retrans-
mission management of all
values from
0 to 20 mA,
0 to $\pm 10 \mathrm{mADC}$,
0 to $\pm 5 \mathrm{mADC}$
0 to 10 V,
0 to $\pm 1 \mathrm{VDC}$
≤ 250 ms typical
(filter excluded)
300 ppm/ ${ }^{\circ} \mathrm{C}$
$\leq 500 \Omega$
$\leq 500 \Omega$
$\leq 1000 \Omega$
$\geq 10 \mathrm{k} \Omega$
$\geq 10 \mathrm{k} \Omega$
By means of optocouplers,
$2000 \mathrm{~V}_{\text {ms }}$ output to
measuring input
$4000 \mathrm{~V}_{\text {ms }}$ output to
supply input

Serial output (on request)	
Type	RS422/RS485;
Multidrop	bidirectional (static and dynamic variables)
Connections	4 wires, max. distance
	1200m, termination and/or
	line bias by means of DIP-
	switches directly on the transducer
Addresses	255, selectable by key-pad
Protocol	MODBUS/JBUS
Data (bidirectional)	
Dynamic (reading only)	System variables:
	P, $\mathrm{P}_{\text {AvG }}, \mathrm{S}, \mathrm{Q}, \mathrm{PF}, \mathrm{V}_{\mathrm{L}-\mathrm{L}, \mathrm{f}} \mathrm{f}$ energy and status of digital
	inputs, setpoint output and
	status of the energy over-
	flow bit,
	Single phase variables:
	$\mathrm{P}_{\mathrm{L} 1}, \mathrm{~S}_{\mathrm{L} 1}, \mathrm{Q}_{\mathrm{L} 1}, \mathrm{PF}_{\mathrm{LL}}, \mathrm{V}_{\mathrm{L} 1-\mathrm{N}}, \mathrm{A}_{\mathrm{L} 1}$,
	$\mathrm{P}_{L_{L}}, \mathrm{~S}_{L_{2}, Q_{L 2}, \mathrm{PF}_{L 2}, \mathrm{~V}_{L 2-N}, A_{L 2},}$
	$P_{L 3}, S_{L 3}, Q_{L 3}, P_{L 3}, V_{L 3-N}, A_{L 3}$
Static (writing only)	All programming data, reset
	of energy, reset of energy
	overflow bit, activation of
	static output.
	Stored energy (EEPROM)
	$\geq 250,000.000 \mathrm{kWh}$
Data format	1-start bit, 8-data bit, no
	parity/even parity, 1 stop bit

CARLO GAVAZZI

Output Specifications (cont.)

Serial output (cont.)	
Baud-rate	1200, 2400, 4800 and 9600 selectable bauds
Insulation	By means of optocouplers, $4000 \mathrm{~V}_{\mathrm{ms}}$ output to measuring inputs $4000 \mathrm{~V}_{\text {ms }}$ output to supply input
Temperature drift	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Pulse output	
Type	From 1 to 999 programmable pulses for kWh, KVAh, KVArh, MWh, MVAh, MVArh, open collector (NPN transistor) $\mathrm{V}_{\text {on }} 0.6 \mathrm{VDC} / \mathrm{max} .4 \mathrm{~mA}$ Voff 26 VDC max.
Pulse duration	20 ms (ON), $\geq 20 \mathrm{~ms}$ (OFF)
Insulation	By means of optocouplers, $4000 \mathrm{~V}_{\text {rms }}$ output to measuring input, $4000 \mathrm{~V}_{\text {rms }}$ output to supply input.

Alarms (on request)
Number of setpoints
Alarm type
Setpoint adjustment
Hysteresis
On-time delay
Relay status
Output type

Min. response time
Insulation

1 independent
Up alarm, down alarm
0 to 100% of the electrical scale
0 to 100% of the electrical scale
0 to 255 s
Normally de-energized Static by TRIAC; performances: 24 VAC to 250 VAC, $\max 50 \mathrm{~mA}$.
300 ms , filter excluded, setpoint on-time delay: "0" $2000 \mathrm{~V}_{\text {ms }}$ output to measuring input, $4000 \mathrm{~V}_{\text {ms }}$ output to supply input

Software Functions

Password	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 499, all data are protected	Transformer ratio	For CT up to 5000 A , For VT up to 100 kV (1MV)
1st level 2nd level		Scaling factor Operating mode	Electrical scale: compression/ expansion of the input scale to be connected to 1 or 2 ana-
Measurement selection	System's active power (W), system's apparent power (VA), system's reactive power (VAr), average active power (Wavg), system's power factor $(\cos \varphi)$, maximum current (I max), average phase-phase voltage, phase-neutral voltagephase 1, phase-neutral vol-tage-phase 2, phase-neutral voltage-phase 3 , frequencyphase 1. System's (+) active energy, system's apparent energy, system's reactive energy, systems (+/-) active energy	Electrical range	logue outputs and to the alarm output. Programmable within the whole measuring range
		Filter Filter operating range Filtering coefficient Filter action	0 to 99.9% of the input electrical scale 1 to 255 Both analogue and serial outputs (fundamental variables: $\mathrm{V}, \mathrm{A}, \mathrm{W}$ and their derived ones)

Supply Specifications

AC voltage

230 VAC (standard),
$-15 \%+10 \% 50 / 60$ Hz
24 VAC, 48 VAC, 115 VAC
(on request),
$-15 \%+10 \% 50 / 60 \mathrm{~Hz}$

Function Description

Input and output scaling capability
Working of the analogue outputs (y) versus input variables (x)
Figure A
The sign of measured quantity and output quantity remains the same. The output quantity is proportional to the measured quantity

Figure D
The sign of measured quantity and output quantity remains the same. With the measured quantity being zero, the output quantity already has the value
$\mathrm{Y} 1=0.2 \mathrm{Y} 2$.
Live zero output.

Figure E

The sign of the measured quantity changes but that of the output quantity remains the same. The output quant ity steadily increases from value X 1 to value X 2 of the measured quantity.

Figure F

The sign of the measured quantity remains the same that of the output quantity changes as the measured quantity leaves range $\mathrm{X0}$...X1 and passes to range $\mathrm{X} 1 \ldots \mathrm{~K} 2$ and vice versa.

General Specifications

Operating temperature	0 to $+50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ (R.H. $<90 \%$ non-condensing)
Storage temperature	-10 to $+60^{\circ} \mathrm{C}\left(14\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ (R.H. $<90 \%$ non-condensing)
Insulation reference voltage	$300 \mathrm{~V}_{\mathrm{ms}}$ to ground
Insulation	$4000 \mathrm{~V}_{\text {ms }}$ between all inputs/ outputs to ground
$4000 \mathrm{~V}_{\text {ms }}$ for 1 minute Dielectric strength $100 \mathrm{~dB}, 48$ to 62 Hz Noise rejection CMRR EN $50081-2, \mathrm{EN} \mathrm{50082-2}$ EMC	

Safety standards Safety requirements: Products requirements:	IEC 601010-1, EN 61010-1 IEC 60688-1, EN 60688-1
Connector	Screw-type, max. $2.5 \mathrm{~mm}^{2}$ wires
Housing Dimensions	6 DIN modules, Material
$58.5 \times 89 \times 107 \mathrm{~mm}$ ABS, self-extinguishing: UL 94 V-0	
Degree of protection	Front: IP50
Weight	Approx. 500 g (packing included)
Approval	CE

Mode of Operation

Accuracy class of the meter

 as a relation of $P_{/} / \mathbf{P}_{\mathrm{n}}$ and $\cos \varphi$

AV1 Un: $100 \mathrm{~V} / \sqrt{ } 3$

AV3	Un: $100 \mathrm{~V} / \sqrt{3} 3$
AV4	Un: 230 V
AV5	Un: 230 V

\mathbf{P}_{1} (installation power)

One phase system:

$$
\mathrm{P}_{\mathrm{t}}=\mathrm{U}_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{t}} \cdot \cos \varphi
$$

Three phase, 3 -wire system:

$$
P_{1}=\sqrt{3} \cdot U_{1} \cdot I_{1} \cdot \cos \varphi
$$

Three phase, 4-wire system:

$$
\mathrm{P}_{\mathrm{I}}=3 \cdot \mathrm{U}_{\mathrm{I}} \cdot \mathrm{I}_{1} \cdot \cos \varphi
$$

where:
$\mathrm{U}_{\mathrm{I}}=$ the real star voltage of the electrical system being measured.
$\mathrm{I}_{1}=$ the maximum phase current of the electrical system being measured.
$\cos \varphi=$ the average $\cos \varphi$ of the electrical system being measured.

\mathbf{P}_{n} (rated power of transducer)

One phase system:

$$
\mathrm{P}_{\mathrm{n}}=\mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}} \cdot \mathrm{VT}(\text { ratio }) \cdot \mathrm{CT}(\text { ratio })
$$

Three phase, 3-wire system:

$$
\mathrm{P}_{\mathrm{n}}=\sqrt{ } 3 \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}} \cdot \mathrm{VT}(\text { ratio }) \cdot \mathrm{CT} \text { (ratio) }
$$

Three phase, 4-wire system:

$$
\mathrm{P}_{\mathrm{n}}=3 \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{n} \cdot \mathrm{VT}(\text { ratio }) \cdot \mathrm{CT}(\text { ratio })
$$

where:
$\mathrm{U}_{\mathrm{n}}=$ the rated input voltage of SPT-DIN depending on the model, see table above.

Trends of the "E" error depending on the \mathbf{S}_{R} scale ratio

Example 2:

Model AV3.3 (4-wire system).
$\mathrm{U}_{\mathrm{I}}=6 \mathrm{kV} / \sqrt{ } 3 \quad \mathrm{~S}_{\mathrm{R}}=\frac{\text { AFS } \cdot(\text { Hi.A }- \text { Lo.A })}{100 \cdot(\text { Hi.E }- \text { Lo.E) }} \leq 1.25$
$\mathrm{I}_{\mathrm{i}}=265 \mathrm{~A}$
$\operatorname{Cos} \varphi=0.85$
$\mathrm{U}_{\mathrm{n}}=100 \mathrm{~V} / \sqrt{ } 3$
$\mathrm{I}_{\mathrm{n}}=5 \mathrm{~A}$

$$
\begin{aligned}
& \mathrm{VT}(\text { ratio })=\frac{6 \mathrm{kV} / \sqrt{ } 3}{100 / \sqrt{3}}=60 \\
& \mathrm{CT} \text { (ratio) }=\frac{300 \mathrm{~A}}{5 \mathrm{~A}}=60
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{I}}=3 \cdot \mathrm{U}_{\mathrm{I}} \cdot \mathrm{I}_{\mathrm{I}} \cdot \cos \varphi
$$

$$
=3 \cdot 6000 / \sqrt{ } 3 \cdot 265 \cdot 0.85
$$

$$
=2.33 \mathrm{MW}
$$

$\mathrm{P}_{\mathrm{n}}=3 \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}} \cdot \mathrm{VT}$ (ratio) $\cdot \mathrm{CT}$ (ratio) $=3 \cdot 100 / \sqrt{ } 3 \cdot 5 \cdot 60 \cdot 60$
$=3.12 \mathrm{MW}$
$\frac{\mathrm{P}_{\mathrm{t}}}{\mathrm{P}_{\mathrm{n}}}=\frac{2.33}{3.12}=0.75$
In both examples the accuracy of the measurement is 0.5% f.s. when considering the changing of the measured voltage from 0.9 Un to 1.1 Un and the measured current from 0.6 In to 1 ln with a $\cos \varphi$ of 0.85 . The accuracy of the output is connected to the accuracy of the measurement plus the scale ratio of both input (Hi.E - Lo.E) and output (Hi.A - Lo.A) as shown in the graph above ($\mathrm{E} \%$ versus S_{R}).

Regarding S_{R} :

$$
\mathrm{S}_{\mathrm{R}}=\frac{\mathrm{AFS} \cdot(\text { Hi.A }- \text { Lo.A })}{100 \cdot(\text { Hi.E }- \text { Lo.E })} \leq 1.25
$$

AFS = automatic electrical full scale calculated value.
$\mathrm{S}_{\mathrm{k}}=$ scale ratio.
There is not any additional error on the output signal if $\mathrm{S}_{\mathrm{k}} \leq 1.25$.

Example 3:

AFS $=3.30 \mathrm{MW}$
Lo. $\mathrm{E}=0 \mathrm{MW}$
Hi. $\mathrm{E}=3.30 \mathrm{MW}$
Lo. $\mathrm{A}=20 \%$
Hi. $\mathrm{A}=99.9 \%$
$\mathrm{S}_{\mathrm{R}}=\frac{3.30(99.9-20)}{100(3.30-0)}=0.8$
$0.8 \leq 1.25$ no additonal errors

Example 4:

$\mathrm{AFS}=3.30 \mathrm{MW}$
Lo. $\mathrm{E}=1.00 \mathrm{MW}$
Hi. $\mathrm{E}=3.30 \mathrm{MW}$
Lo. $A=20 \%$
Hi. $\mathrm{A}=99.9 \%$
$\mathrm{S}_{\mathrm{R}}=\frac{3.30(99.9-20)}{100(3-1)}=1.32$
$1.32 \geq 1.25$ means that there is an additional error of 0.2% f.s. according to the graph at the previous page.

Mode of Operation (cont.)

Waveform of the signals that can be measured

Figure G
Sine wave, undistorted
Fundamental content 100\%
Harmonic content
$\mathrm{A}_{\text {rms }}=$

Figure \mathbf{H}
Sine wave, indented
Fundamental content Harmonic content
10...100\%
0...90\%

Frequency spectrum 3rd to 16th harmonic
Required result: additional error < 1\%

Figure I
Sine wave, distorted
Fundamental content 70...90\%
Harmonic content 10...30\%
Frequency spectrum 3rd to 15th harmonic
Required result: additional error < 0.5\%

Wiring Diagrams

Single phase input connections SPT-DIN AV1/AV3/AV4/AV5.1

Three phase input connections - Balanced loads
SPT-DIN AV1/AV3/AV4/AV5.1

CARLO GAVAZZI

Wiring Diagrams (cont.)

Three phase input connections - Balanced loads SPT-DIN AV1/AV3/AV4/AV5.1

Three-phase, 3-wire ARON input connections - Unbalanced loads SPT-DIN AV1/AV3/AV4/AV5. $\underline{\underline{3}}$

Three phase, 4-wire input connections - Unbalanced loads SPT-DIN AV1/AV3/AV4/AV5. 3

Front Panel Description

1. Key-pad

Set-up and programming procedures are easily controlled by the 3 pushbuttons.
"S"

- Selection key to select programming function (transducer configuration) and alarm detection.
" " and
- Up and down keys for increasing or decreasing programming values.
- Selecting programming functions and transducer configuration together with the " S " key.

2. Display

3 -digit (maximum read-out 999).
Alphanumeric indication by means of 7-segment display for:

- Displaying only the configuration parameters

3. Connection terminal blocks

4. Dip-switch

- For the selection of $2 / 4$ wire connection, line biasing and/or line termination (only in case of RS 485 option)

Dimensions

