Energy Management Smart Power Transducer Type SPT-DIN

Product Description

16-bit µP-based smart power transducer with a built-in configuration key-pad. The

house is for DIN-rail mounting and ensures a degree of protection (front) of IP 50.

- 16-bits µP-based smart power transducer
- Measurements of: W, Wavg, VA, VAr, PF, Wh, VAh, VArh, Amax (among the phases), VL-L avg, VL1-N, VL2-N, VL3-N, Hz L1.
- TRMS measurement of distorted waves (voltage/current)
- All configuration functions selectable by built-in key-pad
- Password protection of programming parameters
- Degree of protection (front): IP 50
- Optional independent alarm setpoint
- Optional analogue output (20 mA DC/±10 mA DC/ ±5 mA DC/10 VDC/±1VDC)
- Optional serial RS 422/485 output
- MODBUS, JBUS protocol.

Type Selection

Range code		System		Auxiliary output		2nd output	
AV1: AV3:	100/√3/100 VAC-1 AAC (max. 130/√3 (L-N)/ 130 V (L-L) - 1.2 A) ¹⁾ 100/√3/100 VAC-5 AAC	1:	One phase, three- phase system (3 or 4 wires, balan- ced load)	X: D: P:	No output (standard) Alarm set-point, static, AC type ¹⁾ Pulse, static,	X: S:	No output (standard) Serial output, RS 485 multidrop bidirec- tional ¹⁾
AV4:	(max. 130/\/3 (L-N)/ 130 V (L-L) - 6 A) ¹⁾ 250/433 VAC - 1 AAC	3:	Three phase system (3 or 4 wires, unba- lanced load)		DC type ¹⁾	А: В:	Analogue output, 20 mADC ¹⁾ Analogue output,
	(max. 300 V (L-N)/ 520 V (L-L) - 1.2 A) ¹⁾	Pow	er supply	1st o	output/input	в. С:	±10 mA ¹⁾ Analogue output,
AV5:	250/433 VAC - 5 AAC (max. 300 V (L-N)/ 520 V (L-L) - 6 A)	A:	24 VAC, -15% +10%, 50/60 Hz ¹⁾	D:	3 digital inputs (managed only by	V:	±5 mA ¹⁾ Analogue output, 10 VDC ¹⁾
	(standard)	B:	48 VAC, -15% +10%, 50/60 Hz ¹⁾	_	means of the serial communication) ¹⁾	U:	Analogue output, 0 to ±1 VDC ¹⁾
		C:	115 VAC, -15% +10%, 50/60 Hz ¹⁾	A:	Analogue output, 20 mADC (standard)		e: Only for B and C out-
		D:	230 VAC, -15% +10%, 50/60 Hz (standard)	В:	Analogue output, ±10 mA ¹⁾		s, the 2nd output can be a B, C or S one.
				C:	Analogue output, ±5 mA ¹⁾		
				V:	Analogue output, 10 VDC ¹⁾		
¹⁾ On r	equest			U:	Analogue output, 0 to ± 1 VDC ¹⁾		
Inp	ut Specification	S					

Number of inputs		Accuracy	
Current	2 (system code: 1)	Voltage/current/energy	±0.5% f.s. includes also:
	6 (system code: 3)		frequency, power supply
Voltage	2 (system code: 1)		and output load influences
-	4 (system code: 3)	Frequency	±0.5% f.s. (45 to 500 Hz)
Digital	4, for 3 free of voltage con-	Active power	· · · ·
-	tacts (inputs managed only	(@ 25°C ± 5°C, R.H. ≤ 60%)	±0.5% f.s. (PF 0.7 L/C,
	by the serial communication)		0.6 to 1 ln, 0.9 to 1.1 Un)
	Reading voltage/current:		±1% f.s. (PF 0.3 L/C,
	24 VDČ/1 mA		0.2 to 1.2 In, 0.7 to 1.2 Un)

CARLO GAVAZZI

Input Specifications (cont.)

Accuracy (cont.)		Ranges (impedances)	
Reactive power		AV1 (Un/In):	100 V /√3/100 V (250 kΩ) -
(@ 25°C ± 5°C, R.H. ≤ 60%)	±0.5% f.s. (PF 0.7 L/C, 0.6 to 1 ln, 0.9 to 1.1 Un) ±1% f.s. (PF 0.3 L/C,	AV3 (Un/In):	1 AAC (≤ 0.3 VA) 100 V /√3/100 V (250 kΩ) - 5 AAC (≤ 0.3 VA)
Apparent power	0.2 to 1.2 ln, 0.7 to 1.2 Un)	AV4 (Un/In):	250 V/433 V (1 MΩ) - 1 AAC (≤ 0.3 VA)
(@ 25°C ± 5°C, R.H. ≤ 60%)	±0.5% f.s., (0.6 to 1 ln, 0.9 to 1.1 Un)	AV5 (Un/In):	250 V/433 V (1 MΩ) - 5 AAC (≤ 0.3 VA)
	±1% f.s., (0.2 to 1.2 ln, 0.7 to 1.2 Un)	Frequency range	48 to 62 Hz
Additional errors		Over-load protection	
Humidity	< 0.3%, 60% to 90% R.H.	Continuous: voltage/current	1.2 x rated input
Input frequency	< 0.4%, 62 to 400 Hz	For 1 s	
Magnetic field	< 0.5% @ 400 A/m	Voltage: Current:	2 x rated input 20 x rated input
Ripple	\leq 1% according to IEC 60688-1 and EN 60688-1	Keyboard	3 keys: "S" for enter programming
Sampling rate	1900 Hz		phase and password confir-
Display	7-segment, LED, h 14.2 mm		mation,
Max. and min. indication	Max. 999, min999		"UP" and "DOWN" for value programming/function
Measurements	W, Wavg, VA, VAr, PF, Wh, VAh, VArh, Imax (among the phases), Vdelta avg, VL1-N, VL2-N, VL3-N, Hz L1. TRMS measurement of a dis- torted wave voltage/current Coupling type : Direct Crest factor: ≥ 3		selection

Output Specifications

Analogue outputs		Serial output (on request)	
Number of outputs	1 (standard) + 1 (on request)		RS422/RS485;
Range	0 to 20 mADC,	Multidrop	bidirectional (static and
	0 to ± 10 mADC,		dynamic variables)
	0 to ± 5 mADC,	Connections	4 wires, max. distance
	0 to 10 VDC, 0 to ± 1 VDC		1200m, termination and/or line bias by means of DIP-
Scaling factor	Programmable within the		switches directly on the
County labor	whole range of retransmis-		transducer
	sion; it allows the retrans-	Addresses	255, selectable by key-pad
	mission management of all	Protocol	MODBUS/JBUS
	values from	Data (bidirectional)	
	0 to 20 mA,	Dynamic (reading only)	System variables:
	0 to ± 10 mADC,		P, P _{AVG} , S, Q, PF, V _{L-L} , f,
	0 to ±5 mADC 0 to 10 V.		energy and status of digital inputs, setpoint output and
	0 to 10 V, 0 to $\pm 1 \text{ VDC}$		status of the energy over-
Response time	$\leq 250 \text{ ms typical}$		flow bit.
	(filter excluded)		Single phase variables:
Temperature drift	300 ppm/°C		$P_{L1}, S_{L1}, Q_{L1}, PF_{L1}, V_{L1-N}, A_{L1},$
Load: 20 mA output	\leq 500 Ω		$P_{L2}, S_{L2,} Q_{L2}, PF_{L2}, V_{L2-N}, A_{L2},$
±10 mA output	\leq 500 Ω		$P_{L3}, S_{L3}, Q_{L3}, PF_{L3}, V_{L3-N}, A_{L3}$
±5 mA output	$\leq 1000 \Omega$	Static (writing only)	All programming data, reset
10 V output	≥ 10 kΩ ≥ 10 kΩ		of energy, reset of energy
± 1 V output			overflow bit, activation of static output.
Insulation	By means of optocouplers,		Stored energy (EEPROM)
	2000 V _{rms} output to measuring input		≥ 250,000.000 kWh
	4000 V _{rms} output to	Data format	1-start bit, 8-data bit, no
	supply input		parity/even parity, 1 stop bit

CARLO GAVAZZI

Output Specifications (cont.)

Serial output (cont.) Baud-rate Insulation Temperature drift	1200, 2400, 4800 and 9600 selectable bauds By means of optocouplers, 4000 V _{ms} output to measuring inputs 4000 V _{ms} output to supply input 200 ppm/°C	Alarms (on request) Number of setpoints Alarm type Setpoint adjustment Hysteresis On-time delay Relay status	1 independent Up alarm, down alarm 0 to 100% of the electrical scale 0 to 100% of the electrical scale 0 to 255 s Normally de-energized
Pulse output		Output type	Static by TRIAC; performan-
Type Pulse duration Insulation	From 1 to 999 programmable pulses for kWh, KVAh, KVAh, KVAh, MWh, MVAh, MVArh, open collector (NPN transistor) V_{ON} 0.6 VDC/ max. 4 mA V_{OFF} 26 VDC max. 20 ms (ON), \geq 20 ms (OFF) By means of optocouplers, 4000 V _{rms} output to measuring input, 4000 V _{rms} output to supply input.	Min. response time Insulation	ces: 24 VAC to 250 VAC, max 50 mA. 300 ms, filter excluded, setpoint on-time delay: "0" 2000 V _{rms} output to measuring input, 4000 V _{rms} output to supply input

Software Functions

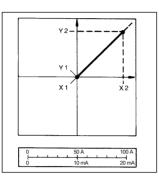
Password	Numeric code of max. 3 di- gits; 2 protection levels of	Transformer ratio	For CT up to 5000 A, For VT up to 100 kV (1MV)
1st level 2nd level	the programming data Password "0", no protection Password from 1 to 499, all data are protected	Scaling factor Operating mode	Electrical scale: compression/ expansion of the input scale to be connected to 1 or 2 ana-
Measurement selection	System's active power (W), system's apparent power (VA), system's reactive power (VAr), average active power (Wavg), system's	Electrical range	logue outputs and to the alarm output. Programmable within the whole measuring range
	power factor ($\cos \varphi$), maxi- mum current (I max), avera- ge phase-phase voltage, phase-neutral voltage- phase 1, phase-neutral vol- tage-phase 2, phase-neutral voltage-phase 3, frequency- phase 1.	Filter operating range Filtering coefficient Filter action	0 to 99.9% of the input electrical scale 1 to 255 Both analogue and serial outputs (fundamental vari- ables: V, A, W and their deri- ved ones)
	System's (+) active energy, system's apparent energy, system's reactive energy, systems (+/-) active energy		

Supply Specifications

AC voltage

230 VAC (standard), -15%+10% 50/60 Hz 24 VAC, 48 VAC, 115 VAC (on request), -15%+10% 50/60 Hz **Power consumption**

 \leq 10 VA


Function Description

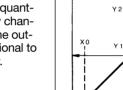
Input and output scaling capability

Working of the analogue outputs (y) versus input variables (x)

Figure A

The sign of measured quantity and output quantity remains the same. The output quantity is proportional to the measured quantity.

Y 1


Y 2

хó

100 V

120 V

 $\mathbf{Y} \mathbf{0} = \mathbf{Y}$

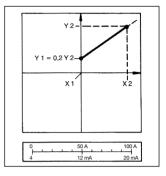
Figure B

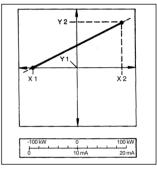
The sign of measured quantity and output quantity changes simultaneously. The output quantity is proportional to the measured quantity.

Figure C

The sign of measured quantity and output quantity remains the same. On the range X0...X1, the output quantity is zero. The range X1...X2 is delineated on the entire output range Y0 = Y1...Y2 and thus presented in strongly expanded form.

Figure D


The sign of measured quantity and output quantity remains the same. With the measured quantity being zero, the output quantity already has the value Y1 = 0.2 Y2.Live zero output.


Figure E

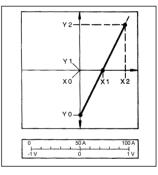
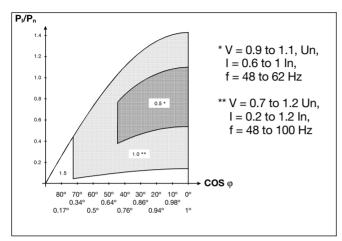

The sign of the measured quantity changes but that of the output quantity remains the same. The output quantity steadily increases from value X1 to value X2 of the measured quantity.

Figure F

The sign of the measured quantity remains the same, that of the output quantity changes as the measured quantity leaves range X0...X1 and passes to range X1...X2 and vice versa.

General Specifications


Operating temperature	0 to +50°C (32 to 122°F) (R.H. < 90% non-condensing)	S
Storage temperature	-10 to +60°C (14 to 140°F) (R.H. < 90% non-condensing)	C
Insulation reference voltage	300 V _{ms} to ground	_
Insulation	4000 V _{ms} between all inputs/ outputs to ground	F
Dielectric strength	4000 V _{ms} for 1 minute	
Noise rejection CMRR	100 dB, 48 to 62 Hz	D
EMC	EN 50081-2, EN 50082-2	V

Safety standards Safety requirements: Products requirements:	IEC 601010-1, EN 61010-1 IEC 60688-1, EN 60688-1
Connector	Screw-type, max. 2.5 mm ² wires
Housing	
Dimensions	6 DIN modules, 58.5 x 89 x 107 mm
Material	ABS, self-extinguishing: UL 94 V-0
Degree of protection	Front: IP50
Weight	Approx. 500 g (packing included)
Approval	CE

CARLO GAVAZZI

Mode of Operation

Accuracy class of the meter as a relation of P/P and cos ϕ

Input	Star voltage	Delta voltage	Current
AV1	Un: 100 V/√3	Un: 100 V	In: 1 A
AV3	Un: 100 V/√3	Un: 100 V	In: 5 A
AV4	Un: 230 V	Un: 398 V	In: 1 A
AV5	Un: 230 V	Un: 398 V	In: 5 A

P. (installation power)

One phase system:

 $P_{\scriptscriptstyle \rm I} = U_{\scriptscriptstyle \rm I} \cdot I_{\scriptscriptstyle \rm I} \cdot \cos \phi$

Three phase, 3-wire system: $P_i = \sqrt{3 \cdot U_i \cdot I_i \cdot \cos \phi}$

Three phase, 4-wire system:

 $\mathbf{P}_{i} = 3 \cdot \mathbf{U}_{i} \cdot \mathbf{I}_{i} \cdot \cos \boldsymbol{\varphi}$

where:

 $\begin{array}{l} U_{\scriptscriptstyle I} = \mbox{the real star voltage of} \\ \mbox{the electrical system being} \\ \mbox{measured.} \\ I_{\scriptscriptstyle I} = \mbox{the maximum phase current of the electrical system} \\ \mbox{being measured.} \\ \mbox{Cos } \phi = \mbox{the average } \mbox{cos } \phi \mbox{ of} \\ \mbox{the electrical system being} \\ \mbox{measured.} \end{array}$

P_n (rated power of transducer) One phase system:

 $P_n = U_n \cdot I_n \cdot VT(ratio) \cdot CT(ratio)$

Three phase, 3-wire system:

 $P_n = \sqrt{3} \cdot U_n \cdot I_n \cdot VT(ratio) \cdot CT(ratio)$

Three phase, 4-wire system:

 $P_n = 3 \cdot U_n \cdot I_n \cdot VT(ratio) \cdot CT(ratio)$

where:

 U_a = the rated input voltage of SPT-DIN depending on the model, see table above.

 $\label{eq:response} \begin{array}{l} I_{\rm n} = \mbox{the rated input current of SPT-DIN depending on the model, see table above.} \\ VT (ratio) = \mbox{the value of the voltage transformer ratio.} \\ CT (ratio) = \mbox{the value of the current transformer ratio.} \end{array}$

Example 1:

 $\begin{array}{l} \mbox{Model AV3.3 (3-wire system).}\\ U_{\rm i}=6~kV~(\mbox{delta voltage})\\ I_{\rm i}=265~A~(\mbox{single phase current})\\ Cos~\phi=0.85~(\mbox{system power factor})\\ U_{\rm n}=100~V\\ I_{\rm n}=5~A\\ VT~(\mbox{ratio})=\frac{6~kV}{100}=60 \end{array}$

CT (ratio) $=\frac{300}{5} = 60$

 $P_{i} = \sqrt{3} \cdot U_{i} \cdot I_{i} \cdot \cos \varphi$ $= \sqrt{3} \cdot 6000 \cdot 265 \cdot 0.85$ = 2.33 MW

$$\begin{split} P_n &= \sqrt{3} \cdot U_n \cdot I_n \cdot VT(\text{ratio}) \cdot CT(\text{ratio}) \\ &= \sqrt{3} \cdot 100 \cdot 5 \cdot 60 \cdot 60 \\ &= 3.12 \text{ MW} \end{split}$$

$$\frac{P_{I}}{P_{B}} = \frac{2.33}{3.12} = 0.75$$

2 2.5 3 25

Trends of the "E" error depending on the S_B scale ratio

Example 2: Model AV3.3 (4-wire system).

05

 $\begin{array}{l} U_{i} = 6 \ kV \ / \ \sqrt{3} \\ I_{i} = 265 \ A \\ Cos \ \phi = 0.85 \\ U_{a} = 100 \ V \ / \ \sqrt{3} \\ I_{a} = 5 \ A \\ \end{array}$ $\begin{array}{l} VT \ (ratio) = \frac{6 \ kV \ / \ \sqrt{3}}{100 \ / \ \sqrt{3}} = 60 \end{array}$

0.6

0.4

0.2

 $CT (ratio) = \frac{300 \text{ A}}{5 \text{ A}} = 60$

$$\begin{split} P_i &= 3 \cdot U_i \cdot I_i \cdot \cos \phi \\ &= 3 \cdot 6000 \ / \ \sqrt{3} \cdot \ 265 \cdot 0.85 \\ &= 2.33 \ MW \end{split}$$

$$\begin{split} P_n &= 3 \cdot U_n \cdot I_n \cdot VT(ratio) \cdot CT(ratio) \\ &= 3 \cdot 100 \ / \ \sqrt{3} \cdot 5 \cdot 60 \cdot 60 \\ &= 3.12 \ MW \end{split}$$

 $\frac{P_1}{P_2} = \frac{2.33}{3.12} = 0.75$

In both examples the accuracy of the measurement is 0.5% f.s. when considering the changing of the measured voltage from 0.9 Un to 1.1 Un and the measured current from 0.6 In to 1 In with a $\cos \varphi$ of 0.85. The accuracy of the output is connected to the accuracy of the measurement plus the scale ratio of both input (Hi.E - Lo.E) and output (Hi.A - Lo.A) as shown in the graph above (E% versus S_R).

Regarding S_R:

 $S_{\scriptscriptstyle R} = \frac{AFS \cdot (Hi.A - Lo.A)}{100 \cdot (Hi.E - Lo.E)} \leq 1.25$

AFS = automatic electrical full scale calculated value. S_{s} = scale ratio. There is not any additional error on the output signal if

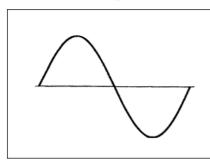
Example 3:

S_∗ ≤ 1.25.

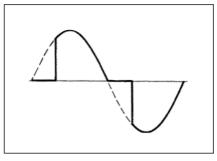
 $\begin{array}{l} AFS = 3.30 \ MW \\ Lo.E = 0 \ MW \\ Hi.E = 3.30 \ MW \\ Lo.A = 20\% \\ Hi.A = 99.9\% \\ S_{\scriptscriptstyle B} = \frac{3.30 \ (99.9\text{-}20)}{100 \ (3.30\text{-}0)} = 0.8 \end{array}$

 $0.8 \le 1.25$ no additonal errors

Example 4:


 $\begin{array}{l} AFS = 3.30 \ MW \\ Lo.E = 1.00 \ MW \\ Hi.E = 3.30 \ MW \\ Lo.A = 20\% \\ Hi.A = 99.9\% \\ S_{\scriptscriptstyle B} = \frac{3.30 \ (99.9\text{-}20)}{100 \ (3\text{-}1)} = 1.32 \end{array}$

 $1.32 \ge 1.25$ means that there is an additional error of 0.2% f.s. according to the graph at the previous page.



Mode of Operation (cont.)

Waveform of the signals that can be measured

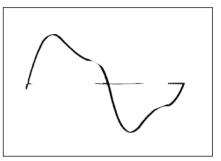
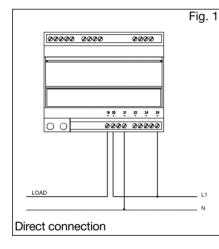
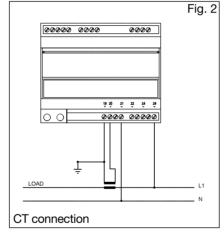

 $\begin{array}{l} \mbox{Figure G} \\ \mbox{Sine wave, undistorted} \\ \mbox{Fundamental content} & 100\% \\ \mbox{Harmonic content} & 0\% \\ \mbox{A}_{rms} = & 1.1107 \ | \ \overline{A} \ | \end{array}$

Figure H Sine wave, indented Fundamental content Harmonic content

Harmonic content 0...90% Frequency spectrum 3rd to 16th harmonic Required result: additional error < 1%

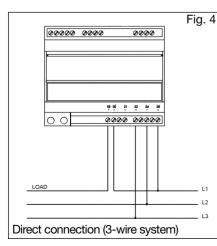
10...100%

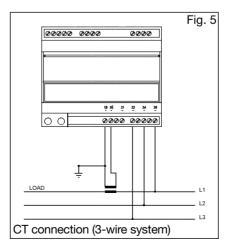



Figure I Sine wave, distorted

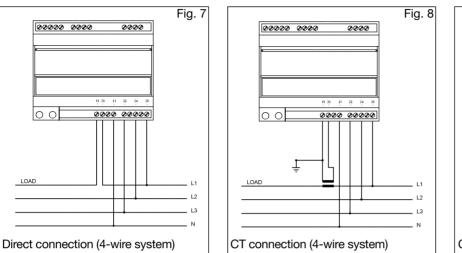
Fundamental content70...90%Harmonic content10...30%Frequency spectrum 3rd to 15th harmonicRequired result: additional error < 0.5%</td>

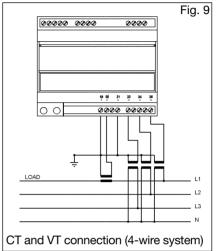
Wiring Diagrams


Single phase input connections SPT-DIN AV1/AV3/AV4/AV5.1

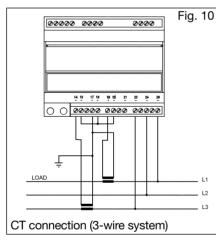


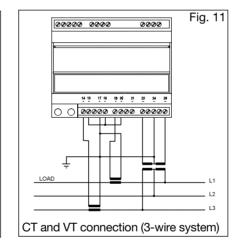
Three phase input connections - Balanced loads SPT-DIN AV1/AV3/AV4/AV5. $\underline{1}$

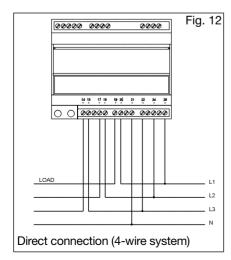


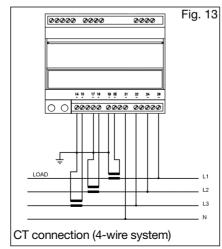

CARLO GAVAZZI

Wiring Diagrams (cont.)

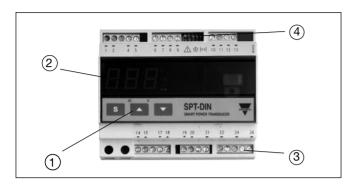

Three phase input connections - Balanced loads


SPT-DIN AV1/AV3/AV4/AV5.1




Three-phase, 3-wire ARON input connections - Unbalanced loads SPT-DIN AV1/AV3/AV4/AV5.3

Three phase, 4-wire input connections - Unbalanced loads SPT-DIN AV1/AV3/AV4/AV5.3



Front Panel Description

1. Key-pad

Set-up and programming procedures are easily controlled by the 3 pushbuttons.

"S"

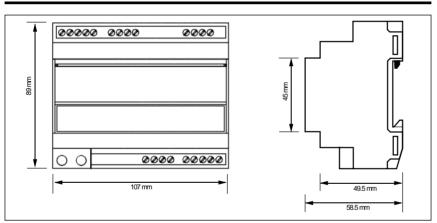
- Selection key to select programming function (transducer configuration) and alarm detection.

Dimensions

- Up and down keys for increasing or decreasing programming values.
- Selecting programming functions and transducer configuration together with the "S" key.

2. Display

3 -digit (maximum read-out 999).


Alphanumeric indication by means of 7-segment display for:

- Displaying only the configuration parameters

3. Connection terminal blocks

4. Dip-switch

 For the selection of 2/4 wire connection, line biasing and/or line termination (only in case of RS 485 option)

